

What is rapid prototyping (RP)

- from 3D-CAD data to prototypes
- with liquid photo-curable resin, thermoplastic resin, nylon powder, metal powder
- using LASER beam, ink-jet, or fused deposition etc
- accumulate layer by layer

T. HAGIWARA, LPM 2004, Nara

photo-curable resin / LASER beam => stereolithography

History of rapid prototyping

1981	Invention of stereolithography by Mr. Kodama (Nagoya) (Patent, paper)
1982	Paper of stereolithography by A. J. Herbert (3M, USA)
1984	Paper of stereolithography by Dr. Marutani (Osaka)
1984	US Patent application by C. Hull (UVP=3D systems)
1987	First commercial system (SLA-1) by 3D Systems
1988	Mitsubishi Corp. put into Japanese market with stereolithography system "SOUP" by the technology transferred from Dr. Marutani
1989	Sonny/JSR, started to sell stereolithography system "SCS"
1989	SLA-250 by 3D Systems
1992	TEIJIN SEIKI started to sell stereolithography system "SOLIFORM"
1992 [,]	~ 94 More than 10 RP manufacturer sells various RP systems
2000	TEIJIN SEIKI bought NTT-Data CMET, Helisis quit LOM
2001	3D Systems bought DTM, canceled the contract with vantico
2002	Toyotsu, TOYOKO, KIRA established DICO
2003	SONY entered US market, TOYOKO quit RP business

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

sales change of RP systems (worldwide)

Speed Accuracy Always, CMET

Situation of RP Systems

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

Rapid prototyping (RP)

- Stereolithography liquid photo-resin, laser beam
- Fused Deposition Modeling (FDM) ABS wire
- Selective Laser Sintering (SLS)
 Nylon powder, CO2 laser beam
- LOM, Paper Lamination Technology paper, CO2 laser beam or knife
- Ink-Jet
 - starch powder, plaster powder, water
- Near net shaping (LENS method etc.)

Fe, Ni metal powder CO2 laser beam

Speed Accuracy Always, CMET

T. HAGIWARA, LPM 2004, Nara

Why stereolithography is important in Japan?

Inkjet

- Originally born in Japan
- Well balanced RP system – accuracy, quality, post-processing etc.
- Easy to make accurate prototype in reasonable period
 - accuracy is very important in Japan
- Most effective tool for R&D in Japan – reduce developing cost and time
- Customers can use a various type of resins. – durable resin, high temperature resin, rubber like resin, water resist resin etc.

Comparison of RP systems

Process of stereolithography

Speed Accuracy Always, CMET

Schematic diagram of stereolithography

Stereolithography

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

Usage of stereolithography model from 3D CAD data to 3D model

- Verification (as a 3D printer)
- Functional test

- Master model for metal casting, vacuum casting, die applications
- Medical
- Others
- Future: mass production parts

Customers of stereolithography in Japan

Data from CMET 2003/E

Usage of the fabricated model

Usage	Japan(%)	US(%)	Remarks
Verification	30	45	communication tool medical
Master model for vacuum casting	40	15	home electronics, automotive
Working model	20	20	high performance resin
Die application	10	20	direct die metal resin, wooden pattern

Change in manufacturing using stereolithography

- trend of "trial-production-less" at R&D process
- by digital engineering using CAD, CAE
 Use of CG, VR for verification

- · only verification: low value
- change of roll from design stage to development or engineering stage
 - demand of high performance resin
 - expectation of rapid manufacturing (RM) resin

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

Resin is key for stereolithography

- resin performance is the key factor for stereolithography
- ► a new resin make a new market and usage
- trend for Rapid Manufacturing (RM)

ABS performance is the Greatest Common Divisor high temperature, durable resin (POM, PC performance) creates new markets

change in resin R&D

Year ~ 1993		1994	1998
generation dawn		1 st	2 nd
R&D item	only model	accuracy	humidity
base resin	UA (epoxy*)	ероху	ероху

UA: urethaneacrylate,

* only CMET used epoxy material from starting

stereolithography resin (around 1999)

accuracy: OK . brittle . remove fault • low HDT . enhance • hardening: slow . performance difference in layer . · vellow

change in resin R&D (continued)

Year	2001-	2003-2005	2005-
generation	3 rd	4 th	5 th
R&D item	durable	ABS	Durable high temperature
base resin	ероху	ероху	epoxy UA

UA: urethane acrylate

T. HAGIWARA, LPM 2004, Nara

Speed Accuracy Always, CMET

Current typical examples

Durable resin CMET TSR-821

T. HAGIWARA, LPM 2004, Nara

ABS like resin **CMET TSR-825**

Speed Accuracy Always, CMET

Speed Accuracy Always, CMET

Typical example of CMET resins

- functional test - verification

- simulation

Medical

- functional test verification

Intake manifold

-functional test

-verification

Direct injection molding die

-injection molding -Rapid manuf.

Rubber model

Speed Accuracy Always, CMET

-verification functional testing

History of the usage

T. HAGIWARA, LPM 2004, Nara

Market needs and thermoplastics

First example of real parts in mass production

- Manifold for water analyzer
 - Imide based resin
 - The parts were put into the market 1999 by HITACHI Ltd.
 - Stable more than 1 year in the water

From Material Fair at Yokohama Oct. 2002 Speed Accuracy Always, CMET

AN-500

T. HAGIWARA, LPM 2004, Nara

- **SUMMARY**
- The stereolithography is suitable for R&D in Japan
- Resin is the key item in stereolithography
- · High performance resin is requested
- Durable resin expands the usage
- Current target is ABS performance - Next is POM, PC performance
- New resin makes new market and usage => Rapid Manufacturing

Speed Accuracy Always, CMET