

材料から見た光造形発展の歴史と 今後の展望

OPTICS & PHOTONICS International Exhibition

OPI 14

OPIEは6つの展示会で構成されます

東京工業大学 大学院理工学研究科 (山形大学 有機エレクトロニクス研究センター 客員教授)

萩原恒夫

2014年4月25日

E-mail: hagiwara.t.ad@m.titech.ac.jp

hagi@hino.email.ne.jp

http://www.thagiwara.jp

目次

- 1. 背景
- 2. 光造形用樹脂
 - 光造形とは
 - 光造形用樹脂
 - RPとして求められる性能
- 3. 材料発展の経緯
- 4. 現状
- 5. 課題と今後の展望

3D Printer; 3次元積層造形法(Additive Manufacturing; AM)とは

- ●3次元の形状データ(CADデータ)をもとに
- ●光硬化性樹脂、熱可塑性樹脂、粉末樹脂、粉末金属などの材料を
- ●レーザー光、電子ビーム、インクジェット、溶融押出などにより
- ●薄膜状(層状)に積み重ねて目的の立体形状とする技術

名称

- ●光造形法:1990年代はじめまで主流
- ●Rapid Prototyping (快速試作)
- Rapid Manufacturing (そのまま製品に)
- ●種々の名称:

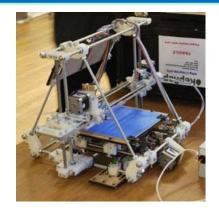
Additive Manufacturing, Additive Fabrication, Free Form Fabrication, Layered

Manufacturing, Direct Manufacturing, Three Dimensional Printing

- ●Additive Manufacturing (AM): 2009年にASTMで名称統一
- ●3Dプリンター: 当初AM装置のうち、インクジェット(Z-Printer)や普及機FDM (Stratasys Dimension, u-Print)機などを呼んでいた。
- →最近ではAM装置の一般名称化; すべてを"3D Printer" と呼ぶようになった。

今、なぜ 3D Printer なのか?

- 高性能PC/グラフィック環境の成熟
- 3D CADシステムの低価格化と普及 3次元データが比較的簡単に生成できるようになった。
- 三次元積層造形(RP=AM)の経験の蓄積, 技術の大衆化
- Rapid Manufacturingの台頭
- 各種RP(AM)装置の基本特許切れ多くが1980年後半に発明され、20年以上が経過
- FDM方式のオープンソース化
 → 大学発ベンチャー機の大量進出; BfB, Makerbot, RepRapなどの成功
- 生活の質の向上と物作りへの欲求の増大
- クリス・アンダーソン "Makers"ブーム
- 米国オバマ大統領の2013.02の一般教書演説における3D Printerへの言及 2013年の世界的な3D Printerへの期待
- この過剰ともいえる高まりが、大きなエネルギーとなって突き進みつつある。
 - →装置の低廉化とともに材料の開発
 - →簡易なデータ作成ツール


3D Printer on TV

TOKYO MX-TV2012年12月10日放送

Personal 3D Printerの台頭

7~12万円 RepRap

Cube 16万円

Bits from Bytes (BfB)

MUTOH MF-1000

20万円

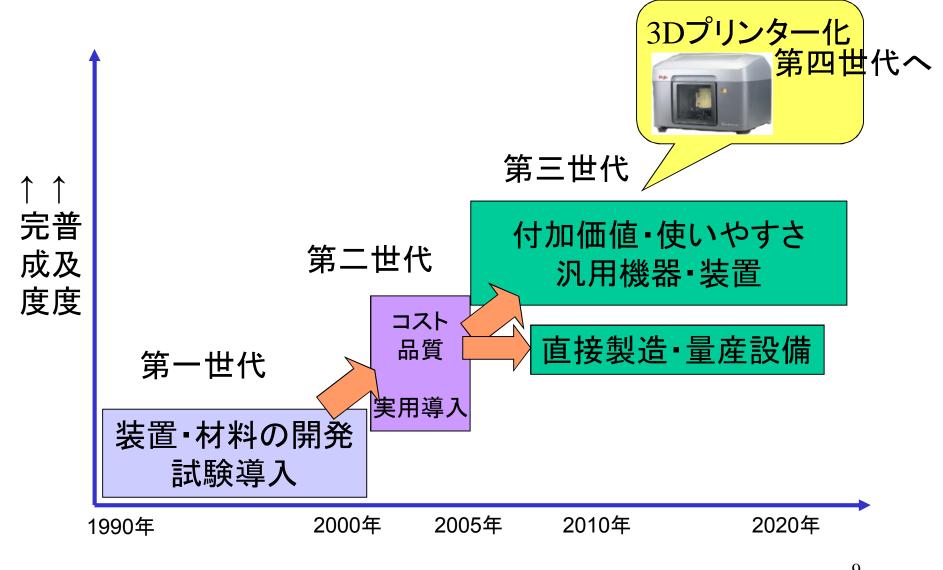
Form1/光造形 35万円

15万円 Makerbot Replicater

BONSAI Mini/10万円

データから立体形状へ

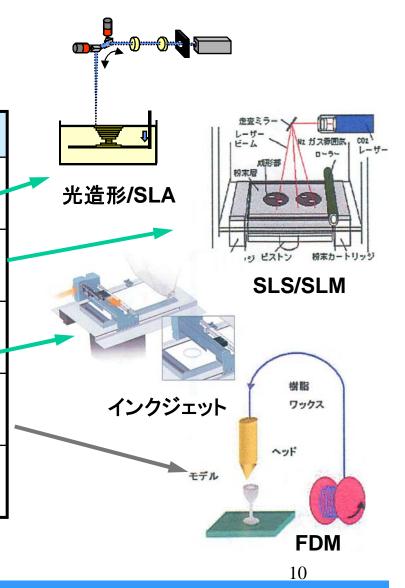
機械加工法	操作	自由度	大量生産	単品 製作	加工の具体例
除去加工(切削)	_	0		0	旋盤、マシニングセンター、研削 放電加工、フライス盤 等々
付加加工	+	0		0	溶接、ろう(ハンダ・銀ろう) 付け、三次元積層造形(A M)
成形加工(塑性)	+ -	Δ	0		射出成形 鍛造・圧延・せん断 プレス・曲げ・絞り


(一: のぞく、十: 加える)

光造形誕生から3Dプリンターへ30余年の歴史

- 1981 小玉秀男氏(名古屋市工試) 基本コンセプト発表(特許・論文)
- 1982 A. Herbert(3M社) 光造形システムの論文発表
- 1984 丸谷洋二氏(大阪府立総研) 論文発表
- 1984 C. Hull (UVP=3D systems) 米国特許出願
- 1986 テキサス大学ナイロン粉末のレーザー焼結(DTM社設立) → 3Dシ ステムズに買収
- 1987 3D Systems社 世界初の光造形実用機 (SLA-1)を製品化
- 1988 三菱商事 丸谷氏の技術に基づきSOUPシステムを製品化 →シーメット社
- 1988? LOM; レーザによる紙積層(イスラエル)
- 1988 Stratasys; 溶融樹脂の積層
- 1989 EOS; ナイロン粉末のレーザー焼結
- 1994 キラ; ナイフによる紙積層(日本)
- 1995 Z-Printer; MITのインクジェットによる粉末積層 → プリンター化
- 1999 Objet; 光硬化性樹脂をインクジェットで積層硬化
- 2000 Envisiontec; DLPによる光硬化性樹脂の積層硬化
- 2012 "Makers"ブーム到来

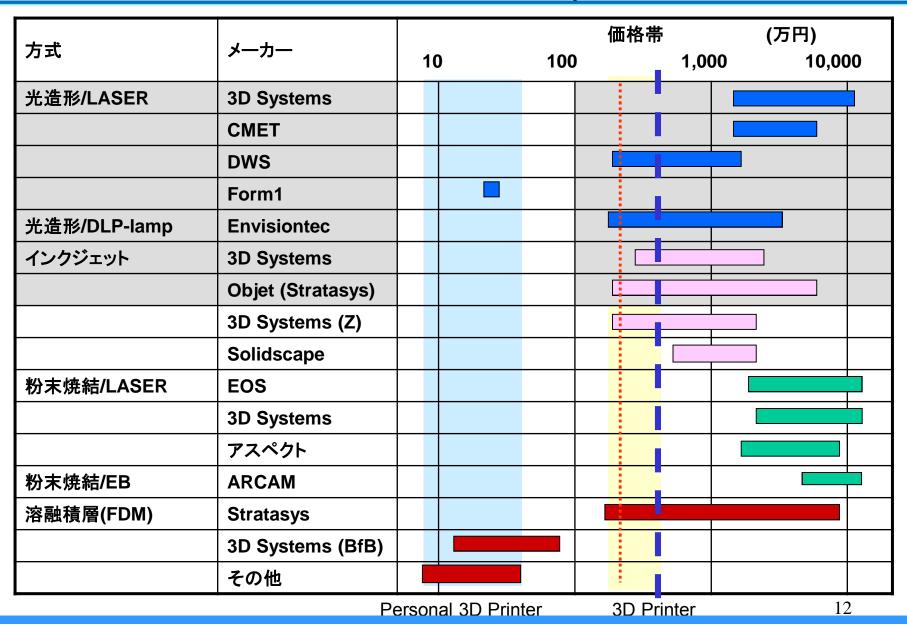
AM装置市場の推移



9

各種3次元積層造形(AM)法

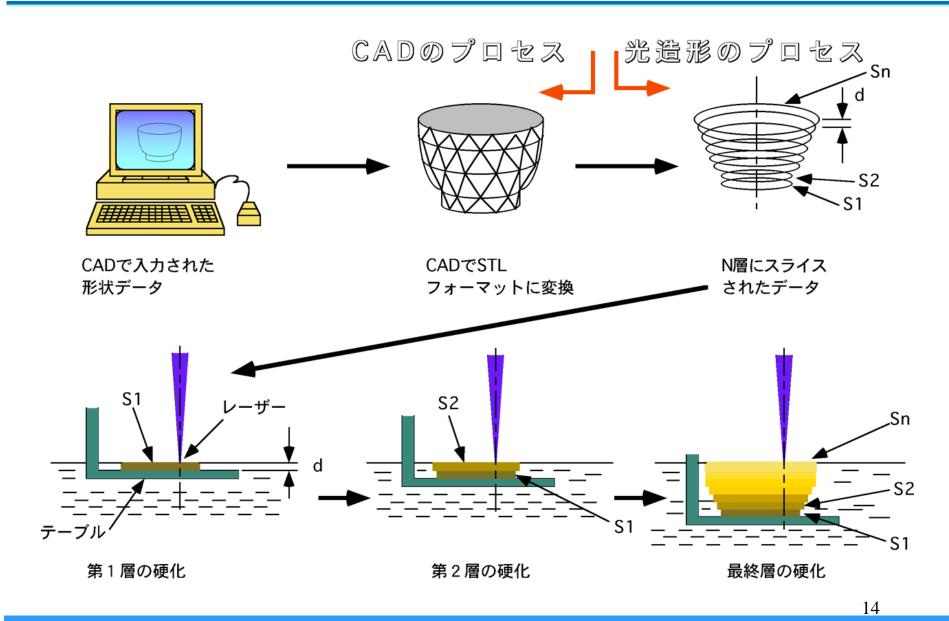
造形法	材料	刺激
光造形法 SLA	液状感光樹脂	UVレーザー UVランプ
粉末焼結法 SLS/SLM	ナイロン金属粉末	CO2レーザー 電子線
インクジェット法 (Z, Objet)	石膏粉末 光硬化性樹脂	水系バインダー UVランプ
溶融樹脂押出法 FDM	ABSワイヤー等	溶融•押出
LENS法、 LOM法 等	金属粉末 紙 など	CO2レーザー ナイフなど


ではないできるシステムの総合比較(日本のものづくりとして)

	光造形	SLS	Ink-Jet (Z)	FDM
精度	0	Δ~Ο	×	Δ~Ο
速度	0	Δ	0	Δ
モデルサイズ	0	Δ~Ο	0~©	Δ~Ο
モデル材料	0	0~©	×~ O	0~©
装置サイズ	△ ~ O	Δ	0~©	0~⊚
操作性	Δ	Δ	0	©
装置価格	△ ~ O	Δ	0	△~◎
総合評価	O~©	Δ~Ο	0	0

AM装置(3D Printer)の価格帯

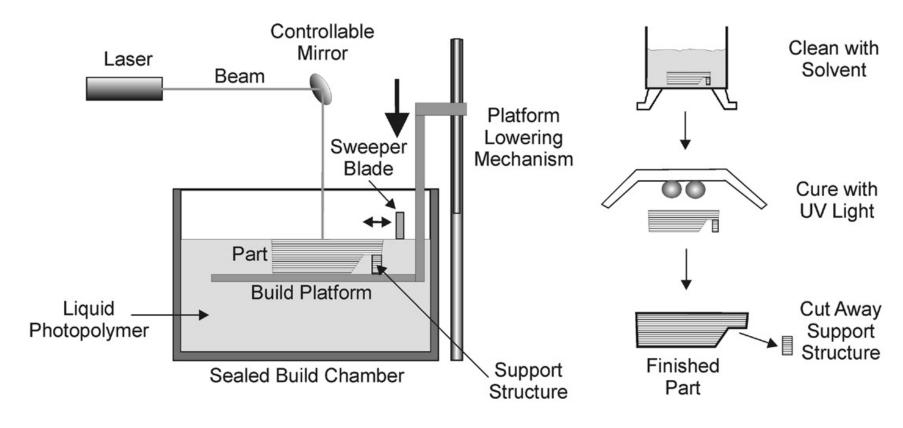
2014.02



目次

- 1. 背景
- 2. 光造形
 - 光造形法とは
 - 光造形用樹脂
 - RPとして求められる性能
- 3. 材料発展の歴史
- 4. 現状と課題と今後の展望

光造形法とは



光造形の特徴

- 1. 液体の光硬化性樹脂を硬化させる
- 2. 基本的にレーザー光をエネルギー
- 3. 樹脂を大きな桶にためて使う
- 4. 装置が比較的大型
- 5. 樹脂は硬化した分だけ補充する。比較的 経済的
- 6. 大きな造形物が比較的短時間で得られる。
- 7. 他のAM法に比較して精度が高い
- 8. 透明な造形物が得られる。

光造形法(SLA)

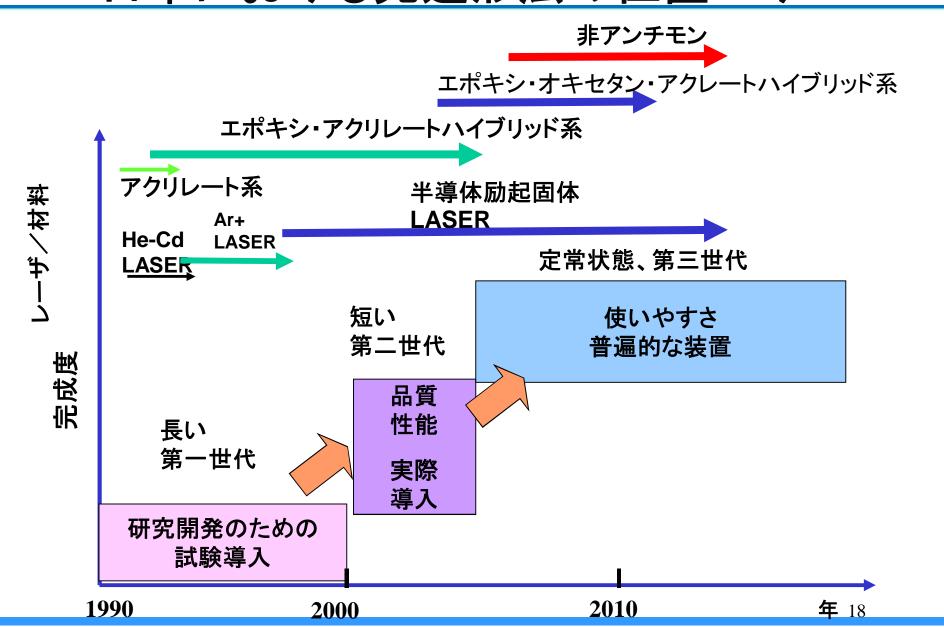
Swift_2013_Manufacturing-Process-Selection-Handbook

光造形装置の実際例

光造形法(SLA)

NRM-6000/CMET

DW-029J/DWS



Prox950/3Dsystems

Perfactory/Envisiontec

TOWN THE TOTAL T

光造形法に求められるもの

- 1. 造形速度
- 2. RPとして使える硬化物の樹脂物性
 - A) 必要とされる外観(表面性)
 - B) 機械物性
 - C) 耐熱性·靱性
- 3. 硬化物の機能
 - A) 真空注型性
 - B) 消失性・鋳造性 など
- 4. 精度

光造形用樹脂への要求特性

- 1. 硬化中の反りが小さい
- 2. 硬化時の体積収縮率が小さい
- 3. 硬化物の機械特性が優れている
- 4. 造形物の寸法精度が優れる
- 5. 造形物の経時変化が小さい
- 6. 硬化スピードが速い
- 7. 積層方向での重合制御性に適している
- 8. 樹脂粘度が低い
- 9. 操作現場下での樹脂の長期安定性に優れる
- 10. 人体への安全性が優れている

光造形用樹脂の分類

1. 光ラジカル重合型

- ウレタンアクリレート化合物
- エポキシアクリレート化合物
- エステルアクリレート化合物
- アクリレート化合物

2. 光カチオン重合型

- ・ エポキシ化合物
- オキセタン化合物
- ビニルエーテル化合物

3. 光カチオン・ラジカル ハイブリット型

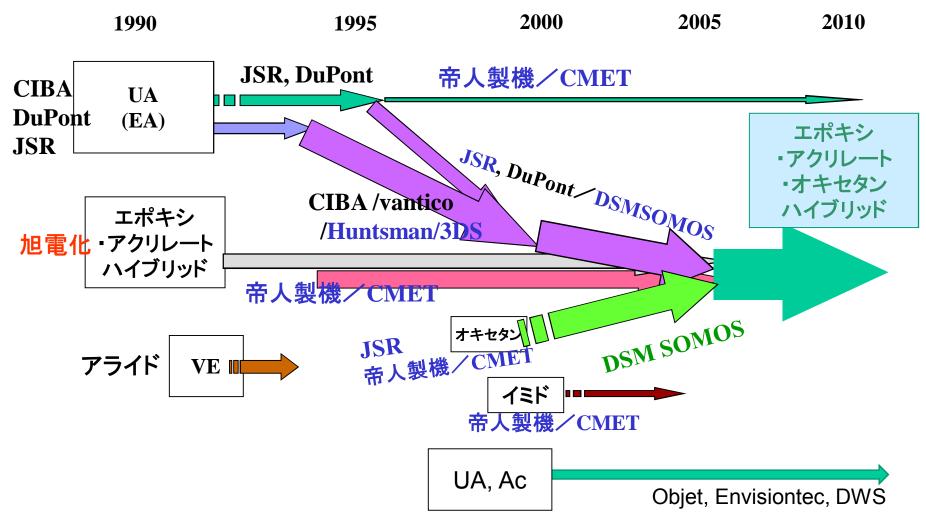
- エポキシ化合物とアクリレート化合物
- エポキシ化合物・オキセタン化合物とアクリレート 化合物

反応様式による違い

	(ウレタン)アクリレート系	エポキシ・アクリレート ハイブリット系
反応様式	ラジカル反応	カチオン/ラジカル
樹脂粘度	Δ~Ο	0~⊚
安定性	0	0
反応速度	0	Δ~Ο
体積収縮率	Δ	0
硬化精度	Δ~Ο	O~ ©
造形物経時変化	Δ~Ο	O~ ©
機械物性	0	O~©
樹脂ポットライフ	0	0
材の選択範囲	0	Δ

AM装置(3DPrinter)の材料例

方式	装置メーカー		主用途	
刀式		カテゴリー	具体例	工门处
光造形/LASER	3D Systems	光硬化性樹脂	エポキシ/アクリレートハイブリッド	試作分野
	CMET	光硬化性樹脂	エポキシ/アクリレートハイブリッド	試作分野
	DWS	光硬化性樹脂	アクリレート系	宝飾、歯科
	Form1	光硬化性樹脂	アクリレート系	ホビー
光造形/DLP-lamp	Envisiontec	光硬化性樹脂	アクリレート系	宝飾、歯科
	ASIGA	光硬化性樹脂	アクリレート系	宝飾、歯科
インクジェット	3D Systems	光硬化性樹脂	アクリレート系/ワックス	宝飾・歯科
	Objet (Stratasys)	光硬化性樹脂	アクリレート系	形状確認・歯科
	3D Systems (Z)	石膏	石膏/水	デザイン・フィギュア
	Solidscape	ワックス	ワックス+バインダー樹脂(Polyester)	宝飾
粉末焼結/LASER	EOS	ナイロン、金属粉	PA12, SUS, Ti, Al, Co-Cr	試作、生産、歯科
	3D Systems	ナイロン、金属粉	PA12, SUS, Ti, Al, , Co-Cr	試作、生産
	アスペクト	ナイロン、PP	PA12, PP	試作
粉末焼結/EB	ARCAM	金属粉	Ti (合金)	医療(インプラント)
溶融積層(FDM)	Stratasys	熱可塑性樹脂	ABS, PC, PEI, PPSF etc	試作、形状確認
	3D Systems	熱可塑性樹脂	ABS, PLA	形状確認、ホビー
	RepRap他	熱可塑性樹脂	ABS, PLA	ホビー 23



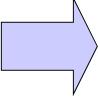
目次

- 1. 背景
- 2. 光造形
 - 光造形とは
 - 光造形用樹脂とは
 - RPとして求められる性能
- 3. 光造形樹脂材料発展の歴史
- 4. 現状
- 5. 課題と今後の展望

光造形用樹脂組成の変遷

EA: エポキシアクリレート, UA: ウレタンアクリレート, VE: ビニルエーテル, Ac: アクリレート

25


光造形用法スタート時(1990年代)

特徵

- 精度はOK
- 脆い(靱性がない)
- 耐熱性が低い
- 造形速度が遅い
- 段差が目立つ
- 黄色い

開発目標

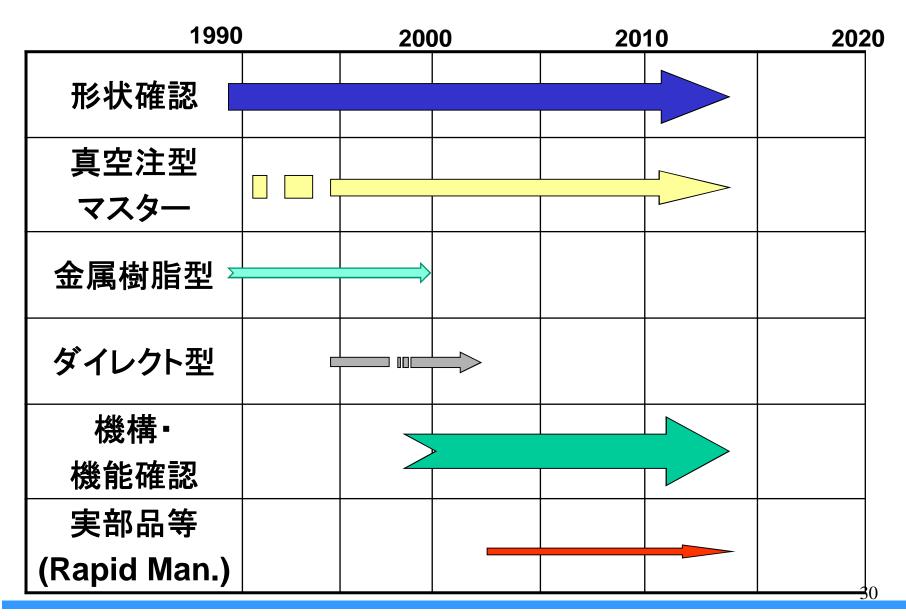
- 問題点の解決
- 問題点の低減
- 性能向上

でおれる対別の対別である。 UA: ウレタンアクリレート, EP: エポキシ

	~ 1993	1994	1998	2001 -
	第0世代	第1世代	第2世代	第3世代
ベース樹脂	UA (EP)	EP	EP	EP
開発指標	造形物が得られ れば驚嘆	精度が重要	耐水向上	靱性に優れる 壊れない
CIBA	XB-5081-1	SL-5180	SL-5510	
vantico				SL-7540
DSM-Somos	SOMOS-3100		SOMOS-7100	SOMOS-9100
3DS (RPC)				AccuDur
JSR	SCR-310		SCR-701	SCR-710
				SCR-735
旭電化	HS-661		HS-665	
	(EP)	HS-673S	HS-680	HS-681
帝人製機		TSR-800	TSR-820	TSR-1938N
CMET				TSR-821 ₂₇

各社の樹脂開発の変遷つづき

	2001 ~	2002~3	2002~6	2006~8	2008~13
ベース樹脂	EP	EP	EP	EP	EP
開発指標	靱性	ABS性能	耐熱	透明・靱性	非アンチモン
Vantico Huntsman	SL-7540 SL-7545	SL-7560 SL-7565 SL-7570	(SL-5530HT)		SL-7800 SL-7810 SL-7820 SL-7870
DSM- SOMOS	SOMOS-9100	WaterShed SOMOS 11120	ProtoTherm SOMOS 12120		
3DS (RPC)	AccuDur	SI-20,30		SI-40 Accura60	
JSR	SCR-710 SCR-735	(SCR-735)	SCR-740	SCR-776	
旭電化	HS-681	HS-690			
CMET	TSR-821	TSR-825	(TSR-920)	TSR-828 TSR-829	TSR-883 TSR-884


UA: ウレタンアクリレート, EP: エポキシ, ()内は既存品

で表現してある。
 一般に表現してのメーカ

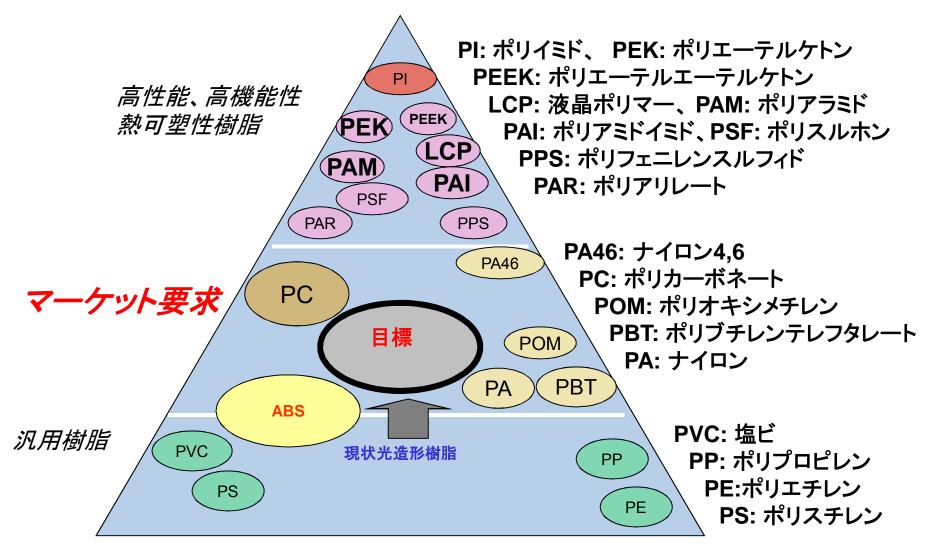
	靱性	ABS ライク	高透明	透明•耐熱	高耐熱	フィラー入	鋳造用	ゴムライク
指標	伸度 >10%	高靱性 高HDT	高透明	透明·耐熱	高HDT	高曲弾性率	易消失	Shore A 70 Shore A 50
シーメット	TSR-821 TSR-831	TSR-832 TSR-883	TSR-829 TSR-839	TSR-884	-	TSR-755		TSR-1920 TSR-510
ADEKA	1	HS-696	-	-	1	-		-
JSR	SCR-712X	SCR-735 SCR-737	SCR-776	SCR-780	SCR-740	(SCR-802)		-
DSM-SOMOS	SOMOS 9120 SOMOS 9420	SOMOS 14120 SOMOS DMX100 SOMOS Next	WaterShed XC-11122	-	ProtoTher m12120	(ProtoTool 20L) NanoTool NanoForm 15120	ProtoCast- 19122	(ULM- 17220)
3Dシステムズ	Accura 25	Accura Xtream Accura 55	Accura 60	-	Accura 48HTR Accura Peak	(Bluestone) Accura CeraMAX	CastPro	-
3Dシステムズ (旧Huntsman)	SL-7840	SL-7800 SL-7810 SL-7820	SL-7870	-	-	-		-

()内はカタログから消えたもの

光造形用途の歴史(CMET社の例)

光造形物の用途一覧

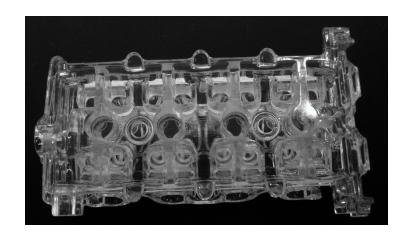
分類	内容	使用部署	適用例
意匠確認 形状検討	見え方、質感、操作性、顧客承認用	デザイン、設計、 営業、医療	家電品、車部品、IT関連製品、AV 製品、手術前検討
組付性検討	組み立ての問題点の 試作前抽出	生産技術試作	家電品、車用品、IT関連製品、AV 製品
ワーキング モデル	早期営業、受注活動用見本	営業	IT関連製品、機械部品、家電品
機能•性能 検討	設計試作、機能性検討用	設計、生産技術 試作	情報関連製品、精密機械、家電品空調機
型検討用	型作成前の問題点抽 出	生産技術、金型設 計	複雑形状部品、曲面多用製品
ダイレクト型	少量、小型部品の試 作製造	生産技術、試作	携帯電話、情報端末



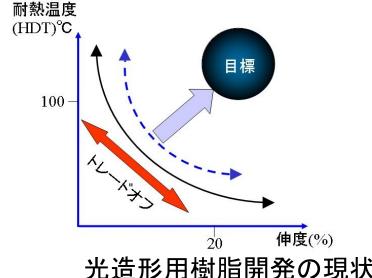
目次

- 1. 背景
- 2. 光造形
 - 光造形とは
 - 光造形用樹脂とは
 - RPとして求められる性能
- 3. 材料発展の歴史
- 4. 現状
- 5. 課題と今後の展望

光造形樹脂への期待


ABS: アクリロニトリル・ブタジエン・スチレン共重合体

33



光造形用樹脂から見た今後

- 光造形は高精度で透明なものが得られることより日本でのRP装 置として大きな役割を占めている。
- しかし、新規樹脂開発はすでに限界に近づいている。
- 顧客はより高い性能: 高耐熱・高靱性 樹脂を期待しているが、 ほとんど絵に描いた餅
- 高透明性を積極利用へ

高透明樹脂 TSR-829/シーメット

光造形用樹脂開発の現状

で発生目を集める3Dプリンター、CES 2014に多数集結

- 2014年1月7日~10日@ラスベガス
- 14種の新製品

今年の特徴: 低価格FDM機から低価格光造形機へ

低価格光造形機: 40万円~50万円

Form1: Formlab, Xfab: DWS

光造形を含めた3D Printerの将来

- 1. ハイエンドAM機は、3D Printerが周知されたことから、試 作やRapid Manufacturingがさらに量が増加
- 2. 安価なパーソナルプリンター(FDM)が、取り扱い性の容易 さから一般消費者へ大きく展開
 - 簡易な三次元データ作成ツールの普及が必要
 - ものづくりとは異なるマーケットが形成されると推定。
- 3. パーソナルプリンターは、装置だけでは採算がとれない。 →装置・ソフト・材料及びデータのトータルビジネスとして展開
- 4. 一般向け造形サービス業が盛んに
 - 米国Shapeways → 日本DMM.comなど
- 5. 医療・歯科向けは今後注目
- 6. その他、新しいタイプのAM法の開発が開始 DMG-MORI、韓国InssTek: レーザー焼結と切削; 今後の 発展に期待

医療・歯科への展開

人体の各種パーツは個人差が大きいため、個別の寸法に対応できる 3Dプリンタが最適

医療・歯科分野における3Dプリンタの活用例。

- 1. 3Dプリンタで印刷された顎の骨(チタンまたはチタン合金)をインプラントに使用
- 2. 人工骨
 - コンピュータ断層撮影装置(CT)や磁気共鳴画像装置(MRI)の3Dデータを、3Dプリンタに取り込むことで作成
- 4. 臓器の手術をする前に、実物と同じ形状の3Dモデルを出力しておき、手術の手順を確認して から手術に臨むことへの活用
- 5. 超音波による胎児の画像の3Dモデルを出力
- 6. 耳の形状を3Dプリントした補聴器の補助具
- 7. 身体の動きをサポートする補助具
- 8. 義手や義足
- 9. 再生医療、BioPlotter, 足場(PLA) iPS細胞などの先端医療

京都大学iPS細胞研究所と東京大学が、人体で最も複雑な形状とされる耳の軟骨の型を3Dプリンタで作製し、そこにiPS細胞を注入して耳を再生する研究など

- 10. 歯科向け
 - 矯正歯科
 - 鋳造
 - ・ストーンモデル
 - 仮歯

高精細・高精度が生きる光造形

高精度

- 1. 矯正歯科
- 2. サージカルガイド
- 3. 歯科鋳造
- 4. 人工歯(仮歯)
- 5. 補聴器

SLA7000/3D Systems

DWS 029D

ProX950/3D Systems

Envisiontec /Perfactory

38

光造形法の矯正歯科への応用

Invisalign®

39

口腔内スキャナーが身近に

3shape▶

3shape TRIOS

新しい人工歯の製作方法

まとめ

- 1. 3Dプリンターと光造形について、概要とその変遷を述べた。
- 2. 3Dプリンター用途として、今後 医療・歯科が大きく発展と予想される。
 - 人体の各種パーツは個人差が大きいため、 個別の寸法に対応できる3Dプリンタが最適。
- 3. 光造形はその高精度、高精細が生かされる用途で今後益々重要。

Thank you!

萩原 恒夫 (HAGIWARA, Tsuneo) E-mail: hagi@hino.email.ne.jp hagiwara.t.ad@m.titech.ac.jp http://www.thagiwara.jp