レーザー光を用いた超精密・超微細3Dプリンティングの最前線

光造形によるセラミックス の高精細三次元積層造形の 最新動向

ネクストラボラトリー 萩原恒夫

1 はじめに

2012年の下半期から世界的に、三次元積層造形 (Additive Manufacturing=AM)装置が「3Dプリンター」 として、にわかに注目され、「産業革命を引き起こす可 能性を秘めている」とまで言われるようになり、マスコ ミに連日取り上げられ大きな話題となった。その後2015 年半ばから落ち着きを見せているが、各国での三次元積 層造形への取り組みは引き続き大きな関心事となってい る。3Dプリンターの中で、液槽光重合法(光造形法) が最も古い歴史を持つとともに高精細で高精度の造形物 を与えることで、日本の製造業で最も広く使われている。 本解説ではこの光造形法を中心に検討が進んでいるセラ ミックスの高精細三次元積層造形についてその現状と動 向について述べる。

2 3Dプリンター(AM装置)とは

3Dプリンターとは、3次元(CAD)データをもとに、 液状の光硬化性樹脂,熱可塑性樹脂,プラスチック粉末、 金属粉末,石膏粉末,砂等の積層材料に対して、レーザ ビーム、電子ビーム、溶融押出し、インクジェット方式 等を用いて一層ずつ積み重ねることにより、成形用の型 や切削工具等を用いずに三次元立体形状を作製する装置 である。2009年のASTM会議で統一されたAM装置の分 類によれば、これらは方式により表1のように分類され ている¹⁾。

これら3Dプリンターの世界市場はWohlersらの報告に よると、装置単価5,000ドル以上に分類される産業向け 装置の2014年の設置台数は13,000台前後となっていて 年率20%以上の伸びを示している²⁾。また、装置単価

積層技術	別名	材料	手段	特長	主な用途
液槽光重合法 Vat Photo-polymerization	光造形法, SLA	光硬化性樹脂	LASER, ランプ	高精度, 高精細大型	試作
粉末床溶融結合法 Powder Bed Fusion	粉末燒結法, SLS, EBM	PA 粉,金属粉	LASER, 電子線	実部品(PA12, 金属)	試作 製品
材料押出法 Material Extrusion	溶融樹脂積層法, FDM 法	ABS, PC ワイヤ など	熱	簡易, ABS~スーパーエンプラ	形状確認 高性能試作
結合剤噴射法 Binder Jetting	インクジェット法, Z-Printer 法	石膏や砂, 水系バインダー	インクジェット	高速,フルカラー大型(砂)	フィギュア 砂型
材料噴射法 Material Jetting	PolyJet 法,MJM 法など	光硬化性樹脂など	インクジェット	比較的簡易 多彩な表現	形状確認 表現
シート 積層法 Sheet Lamination	シート積層法, LOM 法	紙, プラスチックシート	LASER, カッターナイフ	簡易 フルカラー	立体地図
指向エネルギー堆積 Directed Energy Deposition	LENS 法など	金属粉末	LASER	金属	金属部品

表1 3D プリンターの分類

5,000ドル以下に分類され,材料押出法(FDM)が中心 の個人向け3Dプリンターは毎年倍々の伸びを示し, 2014年には全世界で推計約14万台,国内推計では約1万 台前後となっている。装置とその周辺を含めた全世界の 市場規模は2014年で4,500億円前後と見積もられ,2020 年には2兆1,000億円に達すると推定される。今後,こ の勢いが継続的に続き,「ものづくり」のあり方に大き な変化をもたらすものと考えられている。事実,今まで は大きな手間がかかっていたものがAM装置を採用する ことにより極めて簡単にかつ理想的な構成で得られるこ とが分かってきた。これら,AM法の一つの用途として セラミックス製品の作製が挙げられ大きく注目されつつ ある。

3 セラミックス造形について

AM装置を使ってセラミックス造形物を得る方法としては、

- (1)液状光硬化性樹脂にセラミック微粒子を懸濁させた スラーリーを用いる液槽光重合法(光造形法)
- (2)セラミックを高濃度に分散させたペースト状の光硬 化性樹脂を特殊リコーターで積層し、その後上面か ら紫外線レーザを照射する方法
- (3)セラミック粉末を樹脂バインダーで処理しレーザで 焼結させる粉末床溶融法
- (4)セラミック粉末をバインダーにより固着させる結合 剤噴射法
- (5)樹脂にセラミックを混合してワイヤ状にしたものを 押出し積層する材料押出す方法
- (6)高出力レーザでセラミック粉末を直接焼結して最終 製品を作製する方法

などが挙げられる。

これら(1)~(5)の方法はいずれも直接セラミックス最終物を得るのではなく、造形物は樹脂バインダー等で固着 させたグリーン体である。このグリーン体を炉の中で焼 成することによりバインダーを除き密なセラミックス造 形物とする。(6)の方法は直接目的とするセラミックス造 形物が得られることになるが、実用的なレベルになるか どうか今後の研究開発にかかっている。 いずれの方法も一長一短あるが,高精度,高精細なセ ラミックス造形物を得るためには(セラミック含有光硬 化性樹脂を用いる)光造形法が,目下のところ最も優れ ていると考えられている。以下,光造形法によるセラミ ックス造形の現状を述べることとする。

4 液槽光重合法(光造形法)について

光造形法は, 槽に満たした液状の光硬化性樹脂液表面 にUVレーザ光を上面から照射し一層ずつ硬化させ造形 テーブルを下降させながら積層する(自由液面法)タイ プ(図1)と, 比較的小型で下面からレーザ光(図2), またはDLPを利用したLED光またはランプ光を照射し て作業テーブルを引き上げながら積層する(規制液面法) タイプ(図3)とに分類される。

下面照射タイプの装置では樹脂液を平滑化するための 治具(リコーター)を通常持たないことで駆動系が簡単 となり、最近の低価格光造形装置の多くがこの方式を採 用している。

4.1 自由液面法(上面照射タイプ)の光造形装置

国内のシーメット社や米国の3Dシステムズ社の2社が 製造・販売する代表的な自由液面タイプの大型光造形装 置は図1に示すような構成で,現在はジエポキシ化合物 を主成分とし,多官能アクリレートを含む比較的低粘度

図1 大型光造形機(自由液面法)の構成図

図2 下面照射レーザ方式の構成図

図3 下面照射 DLP/ ランプ方式の構成図

の光硬化性樹脂が利用され,造形物は主として産業用の 高精度な試作品の製作などに用いられている³⁾。この装 置に高粘度のスラリー状光硬化性樹脂を入れて利用する ためにはリコーター等を含めて特別な仕様が必要となる。

筆者は1990年代の初め頃,光造形用樹脂としてウレタ ンアクリレート系樹脂を開発していた。この系は収縮率 が大きく,造形途中での「反り」のため大型の造形物を 得るのはかなり厳しい状況であった。そこで,反り低減 (収縮率低減)と物性向上を狙ってガラスビーズ,シリ カ微粒子やアルミナ微粒子などに無機ウィスカーを組み 合わせた無機フィラー材を添加したものを開発してき た。この中で,フィラー分が50 wt%程度のものを TSR-75シリーズとして1994年頃から販売してきた。こ の造形物の物性は金属に迫る曲げ弾性率と高い耐熱性を

図4 帝人製機のTSR-754で造形した試作型

有していたため,試作用の射出成形型へ応用展開を図った。図4にTSR-754で造形した射出成形型の例を示す。 このTSR-75シリーズが市販光造形用樹脂としては最初 のセラミック系樹脂(フィラー強化樹脂)と考えている³⁾。

その後,JSR,DSM-SOMOSおよび3Dシステムズもエ ポキシ系の光硬化性樹脂樹脂にシリカ微粒子を加えたも のを上市して続いた。帝人製機のTSR-75シリーズと同様 にフィラー含量が50 wt%程度であり,この造形物を焼成 しても,樹脂バインダー分が多く,大きく収縮して,実 用的なレベルでセラミックス造形物を得ることは難しい。

筆者らとほぼ同時期に米国・ミシガン大学のGriffith らは3Dシステムズ社の光造形機SLA-250(HeCdレーザ) 機を用いてアルミナやシリカの水系光硬化性スラーリー での光造形を検討している。このものも前記の光硬化性 樹脂とほぼ同様にフィラー濃度が50wt%程度であり, 焼成して高充填のセラミックスを得ることには必ずしも 成功していない⁴⁾。

その後、液状ではなく、セラミックを高濃度で含む餅 のようなペースト状樹脂を押圧して積層し、その上から 紫外線レーザを照射してセラミック含有造形物を得る装 置が2000年ごろにフランスOPTOFORM社で開発され た⁵⁾。このOPTOFORM社は2001年に3Dシステムズ社に 買収され、その装置と材料はDSM-SOMOS社内で改良検 討が行われた。このシステムはまもなく3Dシステムズ 社内から姿を消したが、OPTOFORMタイプの装置がフ

図5 3DCeram 社の CeraMaker 機

ランスやベルギーの研究機関等で研究開発が続けられて いる。

現在,その発展型としてフランスのリモージュ市にある3DCeram社のCeraMakerと呼ばれる装置(図5)⁶⁰が上市され,様々なセラミックスの三次元積層造形に展開されている。

4.2 規制液面法(下面照射タイプ)の光造形装置

レーザを用いた下面照射の光造形機は、1990年はじめ に三井造船社により開発され上市された。しかし、この 方法では大きな造形物を得ようとすると作業テーブルか らの脱落や硬化層の透過槽面からの剥離に課題があり、 安定した造形が難しかったため間もなく姿を消した。

その後,2000年代になると,小型で可視光のレーザを 利用した安価な下面照射型の光造形機が国内のアウトス トラーダ社から販売され,教育機関等に多数設置された。 ほぼ同時期に可視光ランプとDLPプロジェクターを用い た下面照射型の光造形機がドイツのEnvisionTEC社から 発売された。三井造船社の装置と同様に大きな造形物を 得ることは作業テーブルからの落下等の問題があったた め,高さが低く付加価値の高い造形物の作製に注力され, 補聴器や宝飾関連用途に展開した。

2007年頃イタリアのDWS社は、アウストラーダ社の 方式を改良した下面照射型でレーザを用いる光造形機を 開発して宝飾市場に参入した。この比較的小型の装置は レーザ描画による高精細・高精度造形が特徴であり、セ ラミックス造形への展開も期待されている。

オーストリアのウィーン工科大学のベンチャーである Lithoz社において, DLPを使った下面照射タイプの造形 装置でセラミックの造形が進められている。

4.3 3DCeram社の例

3DCeram社の装置Ceramakerは図5に示すような外観 を有し、基本的には先のOPTOFORMのものと仕組み (図6)は同じである。その仕様は表2に示す。この技術 はリモージュ市にあるSPCTSのT. Chartier教授の指導を 受けて設立されたCTTCから技術移転されたものであ

装置サイズ	1060×2250×2040 mm
造形タンク容量	300×300×100 mm
総重量	1450 kg
電源	220–240 VAC/50 Hz
出力	3 kW
光源	UV レーザ/ 355 nm
分解能	\sim 30 μ m
積層厚み	0.010~0.125 mm
環境	20–25°C
許容温度変化	1°C/hour
環境相対湿度	50%
圧縮空気	6 bars dry

表2 3DCeram社Ceramaker機仕様

図6 Ceramakerの構成図

る。その装置で得られるセラミックス造形物としては 図7~9に示すように主にアルミナ,ジルコニア,ヒド ロキシアパタイトなどであり,極めて高精細で得られて いる。これらはいずれも焼成後の充填率は99.7%以上を 有していると報告されている⁷⁾。この中で,ヒドロキシ アパタイト焼成物はすでに臨床で利用されており今後 益々利用が進むものと思われる。また,アルミナやジル コニアの焼成物は電子材料をはじめとして製造業に幅広 い応用が検討されている。このCeramaker機は比較的大 がかりな装置のため,小型で比較的安価な装置での造形 を可能とするための開発が現在進められており⁸⁾,ごく

図7 産業用造形物(材質:アルミナ)

図8 航空・宇宙用造形物(材質:ジルコニア)

図9 医療(骨代替)用造形物(材質:ヒドロキシアパタイト)

近い将来その成果が発表になるものと推定される。

4.4 Lithoz社の例

ウィーン工科大学のベンチャー企業Lithozのセラミッ ク造形用光造形装置は、DLP方式を用いた下面照射タイ プであり図10に示すような構成を有する。この仕組み を有するCeraFab7500(図11)光造形装置の仕様は表3 に示す。この装置は回転する樹脂容器と固定のブレード が特徴で、高粘度のスラーリーはこのブレードで攪拌効 果とともに一定厚みが得られるようになっている。前記 3DCeram社のものとは異なり、流動性のあるスラーリー 状の光硬化性樹脂を採用していており、小型ながら高精 細の造形物の作製が可能となっている。アルミナの造形

図10 Lithoz社 CeraFab7500機の構成図

図11 Lithoz社CeraFab7500の外観

表3 Lithoz社 CeraFab 7500機の仕様

造形サイズ	76×43×150 mm	
光源	LED	
分解能	40 µm (635 dpi)	
ピクセル	1920×1080	
積層厚み	25~100 µm	
造形速度	100 スライス/ hour	
データ形式	.stl (binary)	

図12 CeraFab7500によるアルミナ造形物の例(焼成後)

では図12に示すような微細なものは充填密度99.3%以上(焼成後)で得られている⁹⁾。最近ではジルコニアの 造形例も報告されている。また,前記CeraFab7500より 2倍以上の造形サイズ(115×64×150 mm)を有する CeraFab8500が2015年11月のドイツ・フランクフルトで のFormnext2015で発表された¹⁰⁾。造形サイズが大きく広 がったことにより,この装置を用いた各種材料のセラミ ックス造形に期待している。 Lithoz社では産業用のセラミックス部品などへの積極 的な展開が行われており、今後益々発展するものと思わ れる。

4.5 その他のグループ

4.5.1 SIPでの高付加価値セラミック造形技術の開発

内閣府の戦略的イノベーション創造プログラム (SIP) の中の「高付加価値セラミック造形技術の開発」では、 レーザビームによるバインダーを有するセラミック粉末 の焼結法、セラミックスラーリーを用いる光造形法、レ ーザビームエネルギーによる、焼成を不要とする直接造 形法が検討され、それぞれについて開発が進められてお り、その成果に期待が大きい。成果等の詳細は、http:// www.hcmt.website/index.html を参照して欲しい。

この粉末積層タイプでは,原料粉末の処理方法で充填 性を向上させることや,粉末の供給方法,積層方法,圧 密方法などの各工程の検討,改良を行うとしている。ま た,レーザ照射条件の最適化や造形後の脱脂,焼結など の後処理技術の最適化が行われる。

セラミックスラーリーを用いる光造形法ではスラーリ ーの高濃度化やレーザの照射条件などの検討を行い高密 度なセラミック部材を作製する技術を確立することを目 的としている。

また,直接セラミックス造形物を得るために,材料系 とレーザの吸収挙動/加熱挙動と焼結挙動の関係を系統 的に検討するとしている。

4.5.2 イタリアDWS社の歯科用途

DWS社では光造形法の用途展開として歯科へ応用に 積極的に取り組んでいる。歯科材料分野ですでに確立さ れているコンポジットレジンの技術を手本にシリカ等の 無機フィラーで強化した光硬化性樹脂や,宝飾で培った 歯科鋳造のための材料を上市している。DWSの光造形 機は20~40ミクロンに絞った405 nmのレーザビームを 用いることにより,高精度で高精細な造形物が得られた め,フィラー強化の光硬化性樹脂を用いる「人工歯」 (図13)の開発も行われ,既にヨーロッパでは臨床に利 用されている¹²⁾。今後はジルコニア人工歯等にその技術 を展開していくものと思われる。

図13 DWS社の光造形法による人工歯の例

光造形法によるセラミックスの造形は20年以上の歴 史があるが、まだ発展状態にあると言って良い。現状で のその造形物の応用として、セラミックス造形物の宝飾

図14 DWS社の光造形法による宝飾応用例

図15 3DCeram社のインプラント用途の例(材質:ヒドロキシアパタイト)

用途(図14), ヒドロキシアパタイトを中心とするイン プラント用途(図15), ジルコニアを用いる人工歯用途, 電子材料用途としてのセラミック構造物, 産業向けケミ カルフィルターなどが挙げられる。今後は, 旧来法で何 ステップもかけて作製していたものや成形等では不可能 であった理想的な形状に対してAM法は極めて有効であ り, 今後各種方面からの検討が進められるものと考えて いる。

参考文献

- 丸谷洋二,早野誠治、3Dプリンター,AM技術の持続的発展のために(オプトロニクス社,2014)
- T. Wohlers: "Wohlers Report 2015", Wohlers Associates, Fort Collins, Colorado, USA.
- 3) 萩原恒夫 "素形材", Vol. 53, No. 10 (2012) pp 51-57. 萩原恒夫ホームページ; http://www.thagiwara.jp
- 4) M. I. Griffith et. al., http://sffsymposium.engr.utexas.edu/ Manuscripts/1994/1994-44-Griffith.pdf, USP6117612
- 5) Andre-Luc Allanic, Phillippe Schaeffer, USP 6,764,636 B1, Fr2790418, 特表2002-187917, 特表2003-508246
- 6) Christophe Chaput et. al., EP1, 472, 081 B1, US2005-090575A1, 特許4317027
- 7) Richard Gaignon, Christophe Chaput 氏より写真提供
- 8) Richard Gaignon 氏より萩原私信
- 9) M. Schwentenwein and J. Homa, Int. J. Appl. Chem. Technol. Vol. 12, No. 1 (2015) pp 1-7, およびM. Schwentenwein 氏より写真提供
- 10) E. Zanchetta et. al., Adv. Mater. Vol. 28, No. 2 (2016) pp 370-376.
- 11) https://www.3printr.com/lithoz-presents-the-cerafab-8500-1831379/
- 12) 萩原恒夫 "光アライアンス", Vol. 26, No. 3 (2015) pp 19-23.

各装置メーカの Web site およびそのカタログ

- a) シーメット社; http://www.cmet.co.jp
- b) 3D Systems社; http://www.3dsystems.com
- c) DWS社; http://www.dwssystems.com
- d) EnvisionTEC社; http://www.envisiontec.com

🗖 aaaaaaaaaaaaaaaaa

Tsuneo Hagiwara

NEXT Laboratory SENIOR CONSULTANT

ハギワラ ツネオ 所属:ネクストラボラトリー シニアコンサルタント